# Lessons From Soft-Collinear Effective Theory

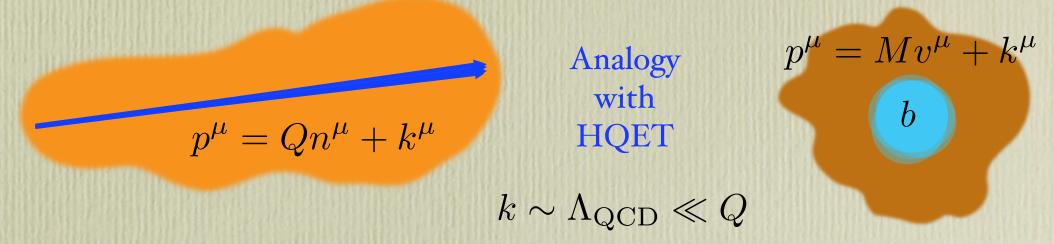
Sean Fleming
Carnegie Mellon University

#### Outline

- Overview of Soft-Collinear Effective Theory
  - Motivation and purpose
- ullet Introduction to SCET through an example:  $B o X_s \gamma$
- SCET Lagrangian and properties
- Some more applications
  - Deep inelastic scattering
  - $J/\psi$  production in  $e^+e^-$  annihilation at  $\sqrt{s}=10.6\,\mathrm{GeV}$

# Soft-Collinear Effective Theory: an Overview

 The basic idea is to understand an approximately massless highly energetic particle interacting with a soft background



• We first introduced the theory in the context of the decay rate for  $B \to X_s \gamma$  when the final state decay product  $X_s$  has energy of order  $M_B$  and invariant mass  $\ll M_B$ 

(C. Bauer, SF, M. Luke, Phys. Rev. D 63: 014006, 2001)

$$\gamma \leftarrow X_s$$

# Soft-Collinear Effective Theory: an Overview

- SCET is a framework for understanding:
  - Factorization
  - Summation of logs that arise at the edges of phase space
  - Systematic method for including power corrections
- SCET Lagrangian, symmetries, and properties
  - C. Bauer, SF, D. Pirjol, I. Stewart, Phys. Rev. D63: 114020, 2001
- Followed by important papers on
  - Gauge symmetries and factorization properties
     C. Bauer, I. Stewart, Phys. Lett. B516: 134, 2001
     C.Bauer, D. Pirjol, I. Stewart, Phys. Rev. D65: 054022, 2002
     C. Bauer, SF, D. Pirjol, I. Rothstein, I. Stewart, Phys. Rev. D66: 014017, 2002
  - Subleading contributions
     J. Chay, C. Kim, Phys. Rev. D65, 114016, 2002
     M. Beneke, A.P. Chapovsky, M. Diehl, T. Feldmann, Nucl. Phys. B643, 2002
  - More ...

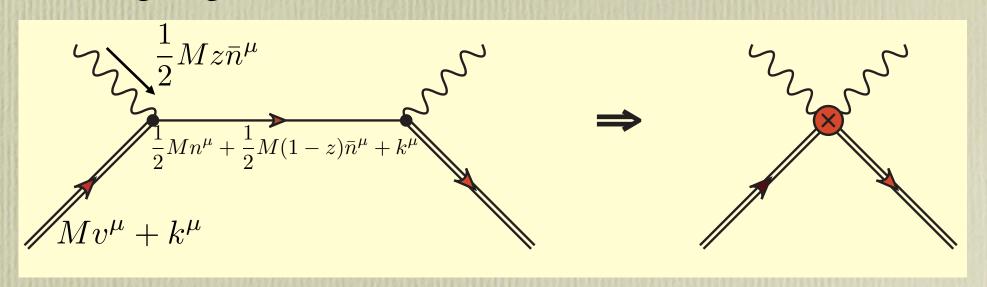
# Return to the beginning: $B \to X_s \gamma$

(C. Bauer, S. F., M. Luke, Phys. Rev. D 63: 014006, 2001)

- OPE in inverse heavy quark mass for inclusive observables
  - Experimental cuts restrict phase space
- Semi-inclusive observables: a set of subleading contributions in the OPE are enhanced
  - Sum enhanced operators into a non-perturbative shape function
- Sudakov Logarithms of the form  $\alpha_s \log^2 \Delta + \alpha_s \log \Delta + ...$  arise for a region of order  $\Delta$  around the maximal photon energy
  - Logarithms summed using perturbative QCD techniques

# Return to the beginning: $B \to X_s \gamma$

What is going on?



$$z = 2E_{\gamma}/M$$
  $\bar{n}^{\mu} = (1, 0, 0, 1)$   $n^{\mu} = (1, 0, 0, -1)$   $P_{X_s}^2 = M^2(1 - z) + Mn \cdot k + \mathcal{O}(\Lambda_{\text{QCD}}^2)$ 

- $P_X^2 \approx M^2(1-z) \gg \Lambda_{\rm QCD}$ :OPE converges
- $M(1-z) \sim \Lambda_{\rm QCD}$  then  $P_X^2 \approx M^2(1-z) + Mn \cdot k \gg \Lambda_{\rm QCD}$ : twist expansion
- $P_X^2 \approx \Lambda_{\rm QCD}$ :Resonance region

# Beyond 1/M

Resumming terms of the form  $\frac{n \cdot k}{M(1-z)}$  from the expansion of

the propagator results in a shape function

M. Neubert, Phys. Rev D49, 3392, 1992 I. Bigi *et al.* Int. J. Mod. Phys. A9, 2467, 1994

#### Decay rate is a convolution:

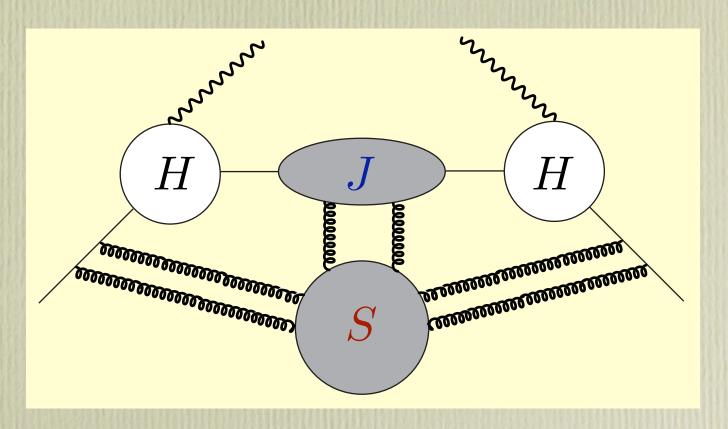
$$\frac{d\Gamma}{dz} = \int d\xi \ f(\xi) \frac{d\Gamma_p}{dz} (\xi - z)$$

- $> f(\xi)$ is the matrix element of a non-local operator
- Measures residual momentum of b-quark in the n direction
- Universal
  - Goal 1: Understand the origin of the non-local operator which gives the shape function in an EFT framework

#### **Peturbative Summation**

Logs are summed using perturbative factorization techniques

G. P. Korchemsky and G. Sterman Phys. Lett. B340, 96 (1994); R. Akhoury and I. Z. Rothstein, Phys. Rev. D54, 2349 (1996).



- In moment space:  $M_N = \int dz \ z^{N-1} \frac{d\Gamma}{dz} = S_N J_N H$ 
  - Sum logs of the form:  $\alpha_s \log^2 N + \alpha_s \log N$

Goal 2: Sum these logs in an EFT using the RGEs

# A New Degree of Freedom

The final state is almost light-like

$$P_{X_s}^{\mu} = \frac{1}{2} M n^{\mu} + \frac{1}{2} M (1 - z) \bar{n}^{\mu} + k^{\mu}$$

$$\sqrt{P_{X_s}^2} \approx M \sqrt{\frac{\Lambda_{\text{QCD}}}{M}} \ll M$$

- Include these collinear modes in our EFT
  - Momentum scaling  $\lambda \sim \sqrt{\frac{\Lambda_{\rm QCD}}{M}}$

$$p = (p^+, p^-, \vec{p}_\perp) = (n \cdot p, \bar{n} \cdot p, \vec{p}_\perp) \sim M(\lambda^2, 1, \lambda)$$

In addition to soft modes

$$k \sim (\Lambda_{\text{QCD}}, \Lambda_{\text{QCD}}, \Lambda_{\text{QCD}}) \sim M(\lambda^2, \lambda^2, \lambda^2)$$

Couple these two modes in the new EFT

# Soft-Collinear Effective Theory

C. Bauer, S F, M. Luke, Phys. Rev. D 63: 014006, 2001
C. Bauer, SF, D. Pirjol, I. Stewart, Phys. Rev. D63: 114020, 2001
C. Bauer, I. Stewart, Phys. Lett. B516: 134, 2001
C.Bauer, D. Pirjol, I. Stewart, Phys. Rev. D65: 054022, 2002



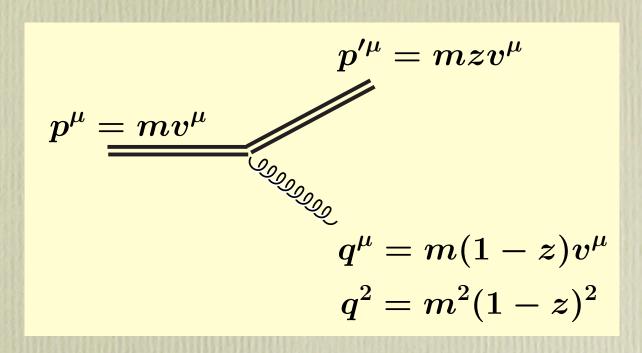
 Effective theory of an approximately massless particle interacting with a soft background

# Soft-Collinear Effective Theory

Analogy with HQET breaks down:

#### **HQET**

Not Allowed!!!

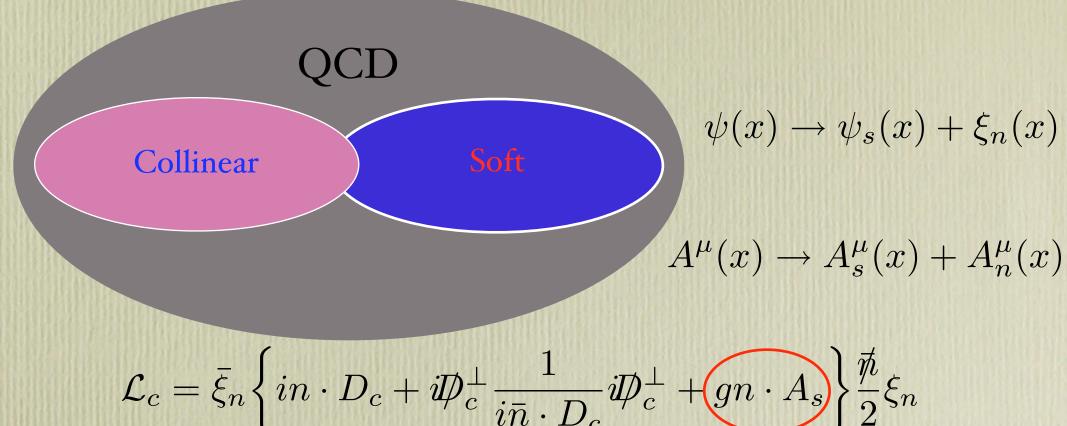


#### SCET

O.K.

$$p^{\mu}=rac{1}{2}Qn^{\mu}$$
  $p'^{\mu}=rac{1}{2}zQn^{\mu}$   $q^{\mu}=rac{1}{2}(1-z)Qn^{\mu}$   $q^2=0$ 

# SCET Lagrangian



- Soft sector: QCD
- Coupled through a single term

 $\mathcal{L}_s = \psi_s i \mathcal{D}_s \psi_s$ 

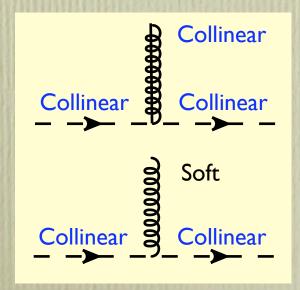
# Feynman Rules

#### Collinear Propagator



$$- - i \frac{\cancel{n}}{2} \frac{\bar{n} \cdot p}{n \cdot p \ \bar{n} \cdot p + p_{\perp}^2 + i\epsilon}$$

#### Verticies



$$igT^A igg[ n^\mu + rac{\gamma_\mu^\perp p_\perp}{ar n \cdot p} + rac{p_\perp' \gamma_\mu^\perp}{ar n \cdot p'} - rac{p_\perp' p_\perp}{ar n \cdot p ar n \cdot p'} ar n^\mu igg] rac{ar n}{2}$$

$$igT^A n^\mu rac{ar{\eta}}{2}$$

# Symmetries

- Separate collinear and soft gauge symmetries
  - Powerful restriction on the form of operators allowed
  - Soft fields act as a background field to collinear fields
  - Any gauge symmetry connecting soft to collinear introduces a large scale
- ullet Global U(1) helicity spin symmetry
- Reparameterization invariance which is a consequence of Lorentz invariance of QCD
  - Relates operators

#### Currents

#### Two important points:

1. Introduce a collinear Wilson line: 
$$W = P \exp \left( ig \int_{-\infty}^{x} ds \ \bar{n} \cdot A_n(s\bar{n}) \right)$$

$$W^{\dagger}\xi_n(x) \to W^{\dagger}\xi_n(x)$$
 under collinear gauge transformations

2. Wilson coefficients are a function of the large light-cone component of the collinear momentum

$$C(\bar{n}\cdot P)$$

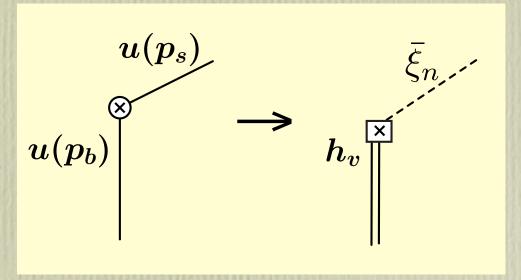
ullet Example: Heavy-light current at leading order in  $\lambda$ 

$$\bar{u}(p_s)\Gamma u(p_b) \to \sum_i \bar{\xi}_n W C_i(\bar{n}\cdot \overleftarrow{P}_{\mathrm{op}})\Gamma_i h_v$$

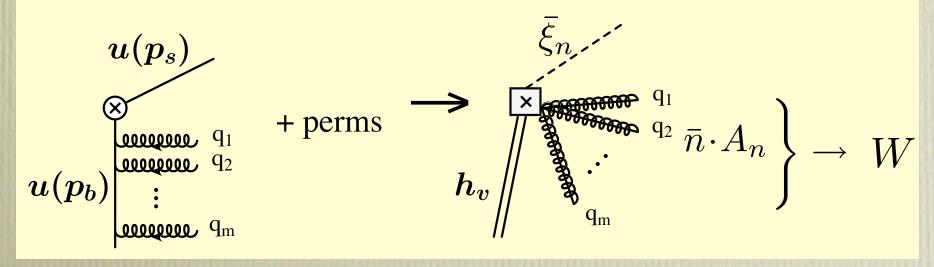
# Heavy-Light Current

#### Origin of the collinear Wilson line

• Leading order in  $\alpha_s$ 



Higher orders



# Decoupling Collinear & Soft

Decouple Soft from Collinear in the Lagrangian

1) Soft Wilson Line

$$Y(x) = \operatorname{Pexp}\left(ig \int_{-\infty}^{x} ds \ n \cdot A_s(ns)\right)$$

2) Field Redefinition

$$\xi_n(x) = Y(x)\xi_n^{(0)}(x)$$

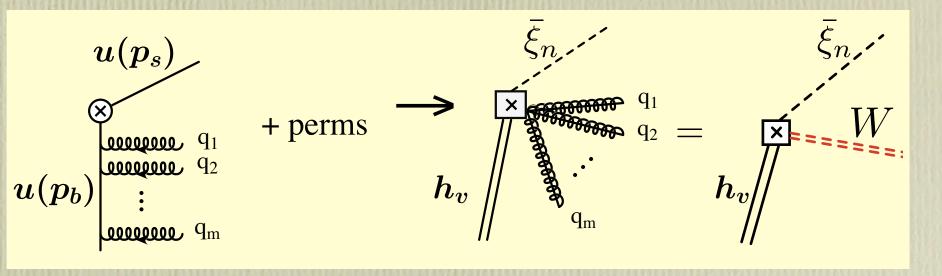
$$\mathcal{L}_c 
ightarrow ar{\xi}_n iggl\{ in \cdot D_c + i \!\!\!\! D_c^\perp rac{1}{i ar{n} \cdot D_c} i \!\!\!\! D_c^\perp iggr\} rac{ar{n}}{2} \xi_n$$

Complicates vertex

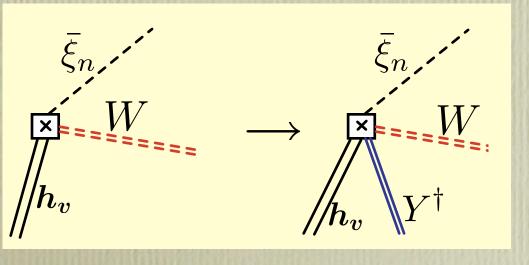
$$\bar{\xi}_n W \Gamma h_v \to \bar{\xi}_n^{(0)} W^{(0)} \Gamma Y^{\dagger} h_v$$

# $B \to X_s \gamma$ in SCET

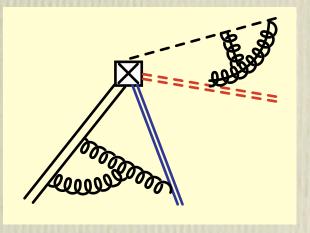
#### 1) Match QCD onto SCET:



#### 2) Decouple Collinear and Soft:

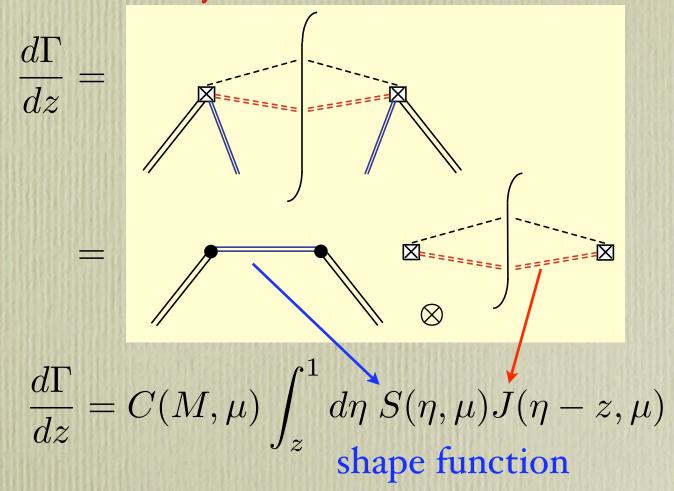


Heavy/Soft do not interact w.Collinear



# $B \to X_s \gamma$ in SCET

3) Factor Decay Rate:

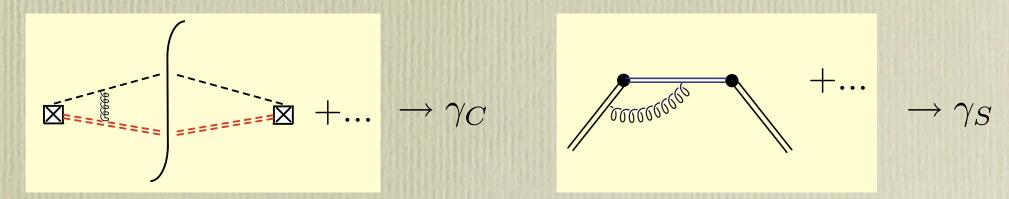


- 4) O.P.E.: Integrate out  $J(\eta-z,\mu)$  at the scale  $\sqrt{M(1-z)}\sim\sqrt{M\Lambda_{\rm QCD}}$ 
  - Perturbatively in expansion in  $\alpha_s(\sqrt{M(1-z)})$

## $B \to X_s \gamma$ in SCET

#### 5) Sum Large Logarithms

Anomalous dimension:



- $\qquad \qquad \mathbf{Run}\,J(\eta-z,\mu)\,\mathbf{from}\,\,M\,\mathbf{to}\,\sqrt{M(1-z)}\sim\sqrt{M}\Lambda_{\mathrm{QCD}} \qquad \qquad \mathbf{Use} \\ \qquad \qquad \mathbf{RGEs}$
- ullet Run  $S(\eta,\mu)$  from M to  $M(1-z) \sim \Lambda_{\rm QCD}$

#### 6) Subleading corrections?

That's being worked on!

#### What we Learned so Far...

- SCET: EFT of collinear d.o.f. coupled to soft d.o.f.
  - Powerful gauge symmetries constrain operators
  - Decoupling via field redefinition
- Factorization using algebraic methods
- Sum phase space logs using RGEs
- ullet Systematically incorporate power corrections in  $\lambda$
- Showed how previous results on  $B \to X_s \gamma$  near the endpoint are simply reproduced from the unified picture of SCET

# Some More Applications

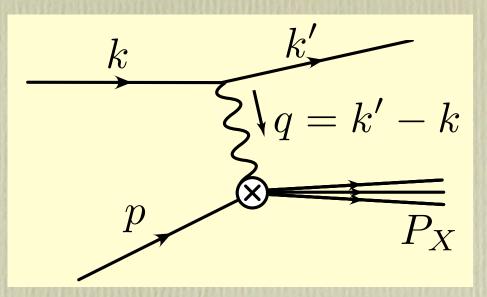
- Deep Inelastic Scattering
- ullet J/ $\psi$  Production at Belle & Babar

# Hard Scattering Factorization

- C. Bauer, SF, D. Pirjol, I. Rothstein, I. Stewart, Phys. Rev. D66: 014017, 2002
- Derived factored forms for
  - Exclusive:  $\pi \gamma$  form factor  $(\gamma \gamma^* \to \pi^0)$ light meson form factor  $(\gamma^* M \to M)$
  - Inclusive: deep inelastic scattering  $(e^-p \rightarrow e^-X)$

Drell-Yan 
$$(p\bar{p} \to X\ell^+\ell^-)$$

deeply virtual Compton scattering  $(\gamma^* p \rightarrow \gamma^{(*)} p)$ 



• Kinematics: Breit frame

$$q^{\mu} = Q(\bar{n}^{\mu} - n^{\mu})/2$$

$$q^\mu=Q(ar{n}^\mu-n^\mu)/2$$
 with  $q^2=-rac{ar{n}\cdot n}{2}Q^2=-Q^2$ 

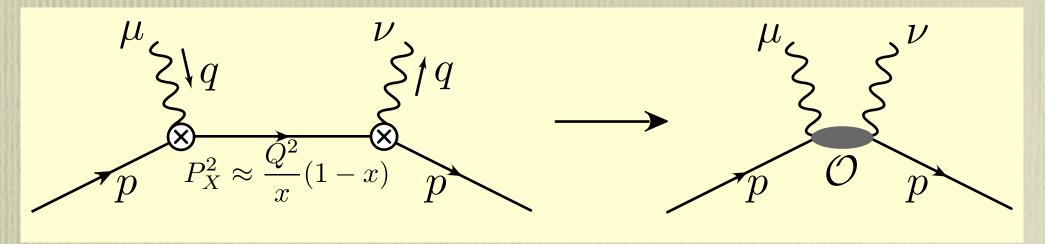
$$x = \frac{Q^2}{2p \cdot q}$$

$$p^{\mu} = n^{\mu} \frac{Q}{2x} + \bar{n}^{\mu} x \frac{m_p^2}{2Q} + \mathcal{O}\left(\frac{m_p^2}{Q^2}\right)$$

$$P_X^\mu = p^\mu + q^\mu$$
 with

$$P_X^2 = \frac{Q^2}{r}(1-x) + m_p^2$$

• OPE: integrate out final state below the scale  $Q^2$  by matching onto SCET



$$T_{\mu\nu}^{\rm eff} \sim \int\!\! d\omega_1\, d\omega_2 C_{\mu\nu}(\omega_1,\omega_2) \mathcal{O}(\omega_1,\omega_2)$$
 depends on large light-cone momentum in hard scattering

- SCET operators  $\mathcal{O}(\omega_1, \omega_2) = \left[\bar{\chi}_{n,\omega_1} \frac{n}{2} \chi_{n,\omega_2}\right]$   $\chi_{n,\omega} = [W^{\dagger} \xi_n]_{\omega}$
- Fix  $C_{\mu\nu}(\omega_1,\omega_2)$  by forcing  $T_{\mu\nu}=T_{\mu\nu}^{\rm eff}$

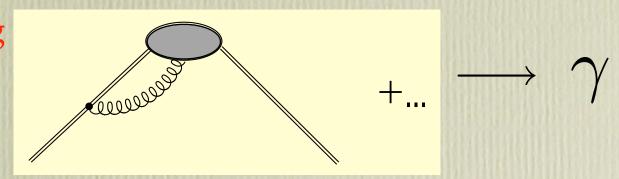
• Decouple soft from Collinear  $\chi_{n,\omega} \to Y\chi_{n,\omega}^{(0)}$ 

$$\left[\bar{\chi}_{n,\omega_{1}} \frac{\bar{m}}{2} \chi_{n,\omega_{2}}\right] \to \left[\bar{\chi}_{n,\omega_{1}}^{(0)} \frac{\bar{m}}{2} Y^{\dagger} Y \chi_{n,\omega_{2}}^{(0)}\right] \quad \begin{array}{c} \text{KLN} \\ \text{Theorem} \end{array}$$

Parton distributions in SCET

$$\frac{1}{4} \sum_{\text{spin}} \langle p_n | \bar{\chi}_{n,\omega} \not \bar{n} \chi_{n,\omega'} | p_n \rangle = \int_0^1 d\xi \, \delta(\omega_-) \delta\left(\frac{\omega_+}{2\bar{n} \cdot p} - \xi\right) f_{i/p}(\xi)$$

Operator running



**RGE** 
$$\mu \frac{d}{d\mu} \mathcal{O}(\omega_1, \omega_2; \mu) = \int dx dy \ \gamma(\omega_1, \omega_2, x, y; \mu) \mathcal{O}(x, y; \mu)$$

Different momentum constraints give different running:

$$\omega_1 = \omega_2 \to \text{DGLAP or } \omega_1 + \omega_2 = \text{Const.} \to \text{BL}$$

• Factored form  $d\sigma \sim \int \frac{d\xi}{\xi} H\left(\frac{\xi}{x}; \mu\right) f_{i/p}(\xi; \mu) \sim \Lambda_{\rm QCD}$ 

## DIS in the Endpoint Region: $x \to 1$

A. Manohar, Phys. Rev. D68: 114019, 2003

$$P_X^2 \approx Q^2(1-x)$$

- For  $1-x \sim \frac{\Lambda_{\rm QCD}}{Q}$  the final state is collinear:  $P_X^2 \sim Q \Lambda_{\rm QCD}$ 
  - Sensitive to  $\mathcal{O}(\Lambda_{\rm QCD})$  motion of the quark in proton

#### New non-perturbative function

$$d\sigma \sim H(Q; \mu) \int \frac{d\xi}{\xi} J(\frac{x}{\xi}; \mu) \int \frac{d\omega}{\omega} f_{i/p}(\frac{\xi}{\omega}; \mu) S(\omega; \mu)$$

$$\sim Q \qquad \sim \sqrt{Q^2(1-x)}$$

Sum logs of various scales using RGEs

# DIS with Massive Quarks

SF: work in progress

- How to treat heavy-quarks in DIS?
- Are they partons?

Is the  $\beta$ -function calculated using the heavy-quark as an active flavor? Is there a heavy-quark pdf?

• Much work on the subject: still controversial

## SCET has something to say!

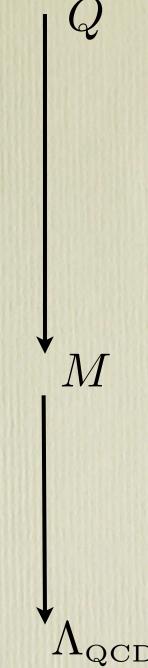
Add massive collinear particle  $p_h^2=M^2$  to SCET New expansion parameter:  $p_h^2\sim Q^2\lambda_h^2\to\lambda_h\sim\frac{M}{Q}$ 

Valid between the scales Q and M.

Below M integrate out heavy by matching onto massless SCET

# DIS with Massive Quarks

Simple prescription  $imes C_M$  +  $\delta$  $\times \tilde{C}_G$ 



# Summary of Hard Scattering Factorization

- DIS as a particular example
  - Factorization from form of SCET operators
  - General running from RGEs
    - Specific kinematics give DGLAP or BL
  - KLN cancellation of soft through decoupling
  - Same framework: DIS at endpoint
    - Soft do not cancel: new non-perturbative function
  - Systematic approach for massive quarks
- Systematically include power corrections in powers of  $\lambda$ 
  - Important for Drell-Yan

# One More Application

ullet J/ $\psi$  Production at Belle & Babar

SF, A. Leibovich, T. Mehen, Phys. Rev. D68:094011, 2003

# $J/\psi$ Production at Belle & Babar $e^+e^- \rightarrow J/\psi + X \, (\sqrt{s} = 10.6 \, {\rm GeV})$

#### Angular distribution

$$\frac{d\sigma}{dp \, d\cos\theta} = S(p)(1 + A(p)\cos^2\theta)$$

$$A(p)$$

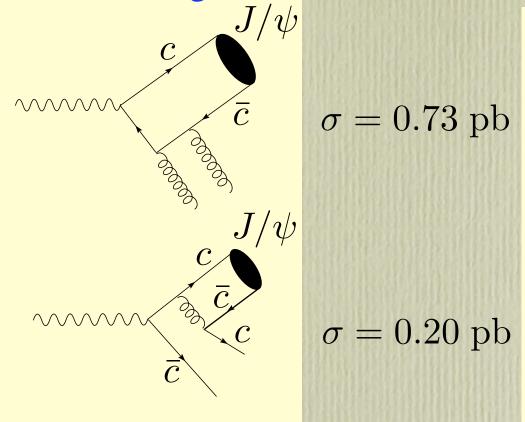
$$\sigma_{tot}(\mathrm{pb})$$
  $p \lesssim 3.5 \ \mathrm{GeV}$   $p \gtrsim 3.5 \ \mathrm{GeV}$   $2.52 \pm 0.21 \pm 0.21$   $0.05 \pm 0.22$   $1.5 \pm 0.6$ 

Belle 
$$1.47 \pm 0.10 \pm 0.13$$
  $0.7 \pm 0.3$   $1.1^{+0.4}_{-0.3}$ 

Babar

Belle 
$$\frac{\sigma(e^+e^- \to J/\psi c\bar{c})}{\sigma(e^+e^- \to J/\psi X)} = 0.59^{+0.15}_{-0.13} \pm 0.12$$

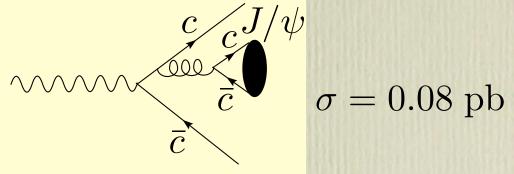
#### Color Singlet



#### Color Octet

$$\sigma = 0.73 \text{ pb}$$

 $\sigma = 0.79 \text{ pb}$ 

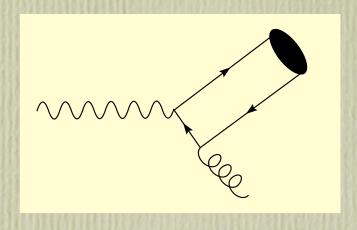


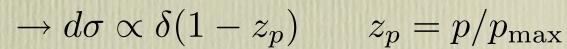
$$\sigma = 0.08 \text{ pb}$$

$$\sigma_{\text{tot}}^{(1)} = 0.93 \text{ pb} + \sigma_{\text{tot}}^{(8)} = 0.87 \text{ pb} \rightarrow \sigma_{\text{tot}} = 1.8 \text{ pb}$$

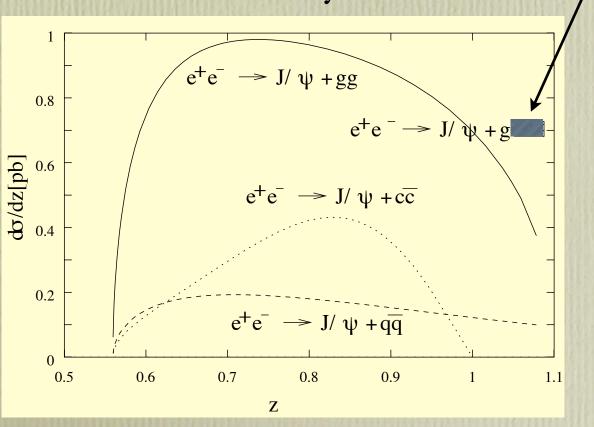
$$\frac{\sigma(e^+e^- \to J/\psi \ c\bar{c})}{\sigma(e^+e^- \to J/\psi \ X)} = 0.1$$

#### Differential Distribution





#### Theory

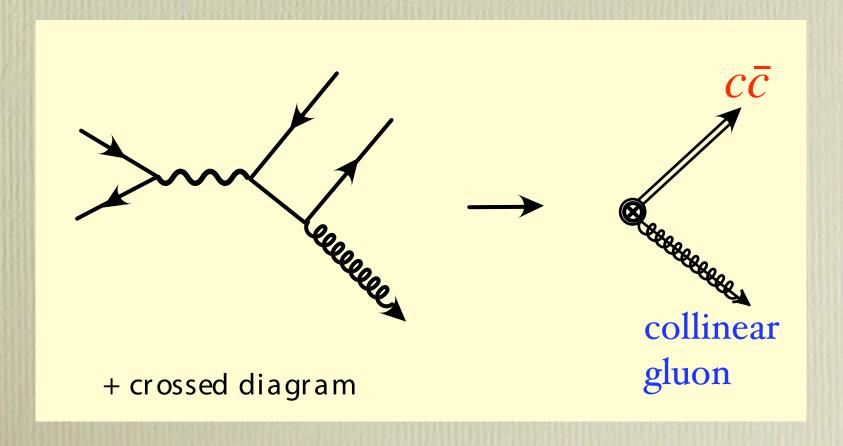


#### Babar



## SCET & NRQCD

- In the Endpoint region:
  - use SCET for the fast & soft d.o.f.
  - use NRQCD for the heavy quark-antiquark



#### Factorization

New factorization formula in the endpoint region: (Similar to  $B \to X_s \gamma$ )

Nonperturbative shape function

$$\frac{d\sigma}{dz} \propto \int_z^1 d\xi \, S(\xi;\mu) J(\xi-z;\mu)$$
 Jet function

Jet function: perturbatively calculable in  $\alpha_s \left( \sqrt{\frac{s}{m_c}} \Lambda_{QCD} \right)$ 

Shape function is universal

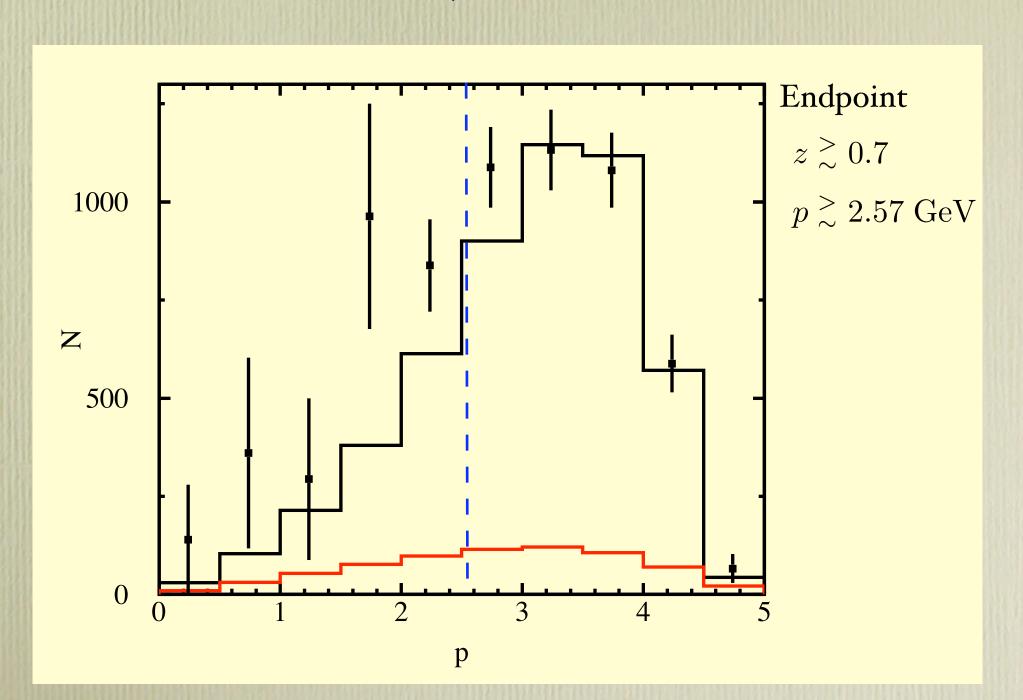
Used a simple model with 2 parameters: require moments to scale appropriately

Overall normalization includes color-octet matrix element Not well determined

Sum logs using RGEs

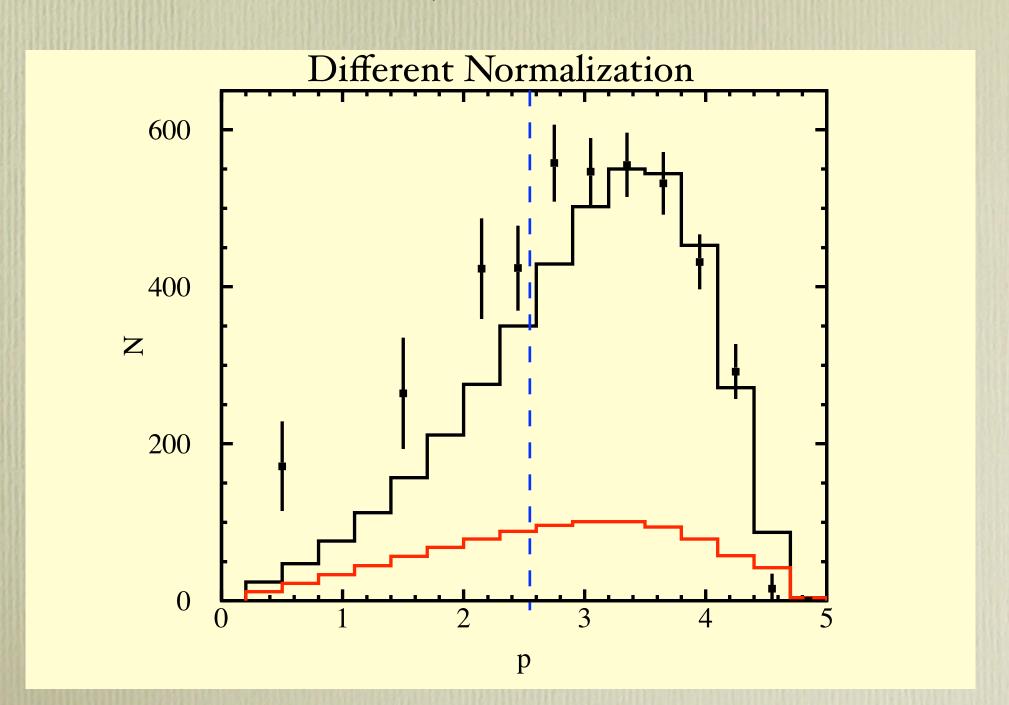
# Comparison to Babar Data

B. Aubert et al. Phys. Rev. Lett. 87: 162002 (2001)

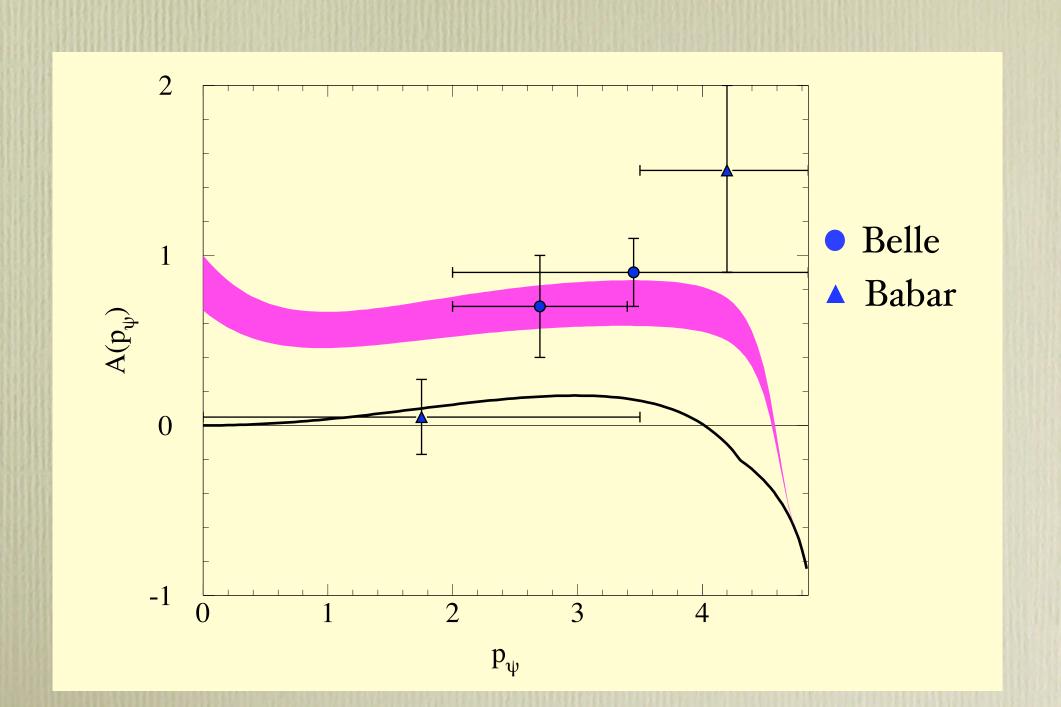


# Comparison to Belle Data

K. Abe et al. Phys. Rev. Lett. 88: 052001 (2002)



# Angular Distribution



# Summary of $e^+e^- \rightarrow J/\psi + X$

- The color-octet contribution is needed to explain  $\sigma_{\rm tot}$ 
  - Contributes mainly in endpoint region
- Need to incorporate collinear physics to get a sensible prediction for  $d\sigma/dp$
- Prediction for  $d\sigma/dp$  and angular distribution consistent with data
- Model for shape function & arbitrary normalization
  - Extract from other process\*
- Charm fraction  $\frac{\sigma(e^+e^- \to J/\psi c\bar{c})}{\sigma(e^+e^- \to J/\psi X)}$  still a mystery
  - Does factorization breakdown?\*

#### \* In progress

# The Tip of the Iceberg

- In this talk
  - $B \to X_s \gamma$  in endpoint region
  - DIS
  - $e^+e^- \rightarrow J/\psi + X$  @ Belle & Babar
- Some More
  - $B \to D\pi$ ,  $B \to \pi\ell\nu$ ,  $B \to \pi\pi$ ,  $B \to \gamma\ell\nu$ ,  $B \to X_u\ell\nu$ ,  $\Upsilon \to \gamma X$ ,  $\gamma \gamma^* \to \pi$ ,  $\gamma^* M \to M$ ,  $\gamma^* p \to \gamma^{(*)} p$ ,  $p\bar{p} \to X\ell^+\ell^-$ , Jet distributions in  $e^+e^-$  annihilation, Power corrections
- Visions of the Future
  - Massive quarks in DIS
  - Jets in  $e^+e^-$ annihilation

  - Apply SCET to multi-scale process in  $p\bar{p}$  collisions
  - Electroweak Sudakov logs

# Summary & Conclusions

- Flavor of Soft Collinear Effective Theory
  - Theory of light-like particles interacting with a soft background
  - Derive factorization
  - Sum logarithms
  - Systematically treat power corrections
- Scope of applications is large
  - Examples: B decays to DIS
- A very active field
- Only scratched the surface: so much left to do...